Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
Chinese Journal of Medical Genetics ; (6): 756-761, 2023.
Article in Chinese | WPRIM | ID: wpr-981821

ABSTRACT

Epilepsies are a group of chronic neurological disorders characterized by spontaneous recurrent seizures caused by abnormal synchronous firing of neurons and transient brain dysfunction. The underlying mechanisms are complex and not yet fully understood. Endoplasmic reticulum (ER) stress, as a condition of excessive accumulation of unfolded and/or misfolded proteins in the ER lumen, has been considered as a pathophysiological mechanism of epilepsy in recent years. ER stress can enhance the protein processing capacity of the ER to restore protein homeostasis through unfolded protein response, which may inhibit protein translation and promote misfolded protein degradation through the ubiquitin-proteasome system. However, persistent ER stress can also cause neuronal apoptosis and loss, which may aggravate the brain damage and epilepsy. This review has summarized the role of ER stress in the pathogenesis of genetic epilepsy.


Subject(s)
Humans , Endoplasmic Reticulum Stress/genetics , Unfolded Protein Response , Endoplasmic Reticulum/pathology , Apoptosis , Epilepsy/genetics
2.
Acta Physiologica Sinica ; (6): 835-844, 2021.
Article in Chinese | WPRIM | ID: wpr-921287

ABSTRACT

The mitochondrial unfolded protein response is an important component of the mitochondrial protein quality control program. It can effectively remove unfolded or misfolded proteins under stress, and maintain a stable and healthy mitochondrial pool. The mitochondrial unfolded protein response is coordinated by multiple signaling pathways. The classical ATF4/ATF5-CHOP pathway is induced by accumulation of unfolded or misfolded proteins in the mitochondrial matrix, which reduces stress toxicity by regulating molecular chaperones and proteases. Sirt3-FOXO3a-SOD2 pathway, located in the mitochondrial matrix, plays an important role in anti-oxidative damage. The ERα-NRF1-HTRA2 pathway mainly removes unfolded proteins in the mitochondrial membrane space and improves the quality control of mitochondrial proteins. These three signaling pathways work both independently and cooperatively to enhance mitochondrial capacity and maintain health under stress.


Subject(s)
Mitochondria , Mitochondrial Proteins/metabolism , Oxidative Stress , Signal Transduction , Unfolded Protein Response
3.
Chinese Journal of Biotechnology ; (12): 67-77, 2021.
Article in Chinese | WPRIM | ID: wpr-878543

ABSTRACT

Endoplasmic reticulum (ER) is an important organelle where folding and post-translational modification of secretory and transmembrane proteins take place. During virus infection, cellular or viral unfolded and misfolded proteins accumulate in the ER in an event called ER stress. To maintain the equilibrium homeostasis of the ER, signal-transduction pathways, known as unfolded protein response (UPR), are activated. The viruses in turn manipulate UPR to maintain an environment favorable for virus survival and replication. Herpesviruses are enveloped DNA viruses that produce over 70 viral proteins. Modification and maturation of large quantities of viral glycosylated envelope proteins during virus replication may induce ER stress, while ER stress play both positive and negative roles in virus infection. Here we summarize the research progress of crosstalk between herpesvirus infection and the virus-induced ER stress.


Subject(s)
Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum Stress , Herpesviridae , Signal Transduction , Unfolded Protein Response
4.
Rev. méd. Chile ; 148(2): 216-223, feb. 2020. graf
Article in Spanish | LILACS | ID: biblio-1115779

ABSTRACT

The clinical features of Alzheimer's disease (AD), for example the progressive memory loss, are produced by neuronal loss and synaptic dysfunction. These events have been associated with histopathological alterations in AD brain, including the presence of amyloid plaques and neurofibrillary tangles. Recent studies suggest that cellular stress produced by the aggregation of misfolded proteins leads to alterations in protein homeostasis, that is regulated for the most part by endoplasmic reticulum (ER). The ER is the main compartment involved in the folding and secretion of proteins and is drastically affected in AD neurons. Recent evidence implicates the participation of adaptive responses to stress within the ER in the disease process through a signaling pathway known as the Unfolded Protein Response (UPR) which alleviates the protein aggregation and ER stress. Based on the involvement of ER stress in several diseases, efforts are being done to identify small molecules that can inhibit or activate selective UPR components. Here, we review the findings suggesting a functional role of ER stress in the etiology of AD. Possible therapeutic strategies to mitigate ER stress in the context of AD are discussed.


Subject(s)
Humans , Alzheimer Disease , Signal Transduction , Endoplasmic Reticulum , Unfolded Protein Response , Endoplasmic Reticulum Stress
5.
Acta Physiologica Sinica ; (6): 190-204, 2020.
Article in Chinese | WPRIM | ID: wpr-827068

ABSTRACT

Endoplasmic reticulum (ER) is an important organelle for protein folding, post-transcriptional modification and transport, which plays an important role in maintaining cell homeostasis. A variety of internal and external environmental stimuli can cause the accumulation of misfolded or unfolded proteins in the endoplasmic reticulum, and then result in ER stress. ER stress activates the unfolded protein response (UPR) and initiates a cluster of downstream signals to maintain ER homeostasis. However, severe and persistent ER stress activates UPR, which eventually leads to apoptosis and diseases. In recent years, a lot of researches suggest that ER stress plays an important role in the pathogenesis of various cardiovascular diseases (CVD), including ischemic heart disease, diabetic cardiomyopathy, heart failure, atherosclerosis and vascular calcification, high blood pressure and aortic aneurysm. ER stress might be one of the important targets for treatment of multiple CVD. Herein, the regulation mechanism of ER stress by activating UPR pathways in various common CVD and the new research advances in relationship of ER stress and CVD are briefly reviewed.


Subject(s)
Humans , Apoptosis , Cardiovascular Diseases , Endoplasmic Reticulum , Endoplasmic Reticulum Stress , Unfolded Protein Response
6.
Korean Circulation Journal ; : 395-405, 2020.
Article in English | WPRIM | ID: wpr-816678

ABSTRACT

Despite considerable efforts to prevent and treat cardiovascular disease (CVD), it has become the leading cause of death worldwide. Cardiac mitochondria are crucial cell organelles responsible for creating energy-rich ATP and mitochondrial dysfunction is the root cause for developing heart failure. Therefore, maintenance of mitochondrial quality control (MQC) is an essential process for cardiovascular homeostasis and cardiac health. In this review, we describe the major mechanisms of MQC system, such as mitochondrial unfolded protein response and mitophagy. Moreover, we describe the results of MQC failure in cardiac mitochondria. Furthermore, we discuss the prospects of 2 drug candidates, urolithin A and spermidine, for restoring mitochondrial homeostasis to treat CVD.


Subject(s)
Adenosine Triphosphate , Cardiovascular Diseases , Cause of Death , Heart Failure , Heart , Homeostasis , Mitochondria , Mitophagy , Organelles , Quality Control , Spermidine , Unfolded Protein Response
7.
Endocrinology and Metabolism ; : 39-46, 2019.
Article in English | WPRIM | ID: wpr-739221

ABSTRACT

The signaling network of the mitochondrial unfolded protein response (UPR(mt)) and mitohormesis is a retrograde signaling pathway through which mitochondria-to-nucleus communication occurs in organisms. Recently, it has been shown that the UPR(mt) is closely associated with metabolic disorders and conditions involving insulin resistance, such as alcoholic and non-alcoholic fatty liver and fibrotic liver disease. Scientific efforts to understand the UPR(mt) and mitohormesis, as well as to establish the mitochondrial proteome, have established the importance of mitochondrial quality control in the development and progression of metabolic liver diseases, including non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH). In this review, we integrate and discuss the recent data from the literature on the UPR(mt) and mitohormesis in metabolic liver diseases, including NAFLD/NASH and fibrosis.


Subject(s)
Humans , Alcoholics , Fatty Liver , Fibrosis , Insulin Resistance , Liver Diseases , Metabolism , Mitochondria , Non-alcoholic Fatty Liver Disease , Obesity , Proteome , Quality Control , Unfolded Protein Response
8.
Chonnam Medical Journal ; : 8-19, 2019.
Article in English | WPRIM | ID: wpr-719481

ABSTRACT

The Endoplasmic reticulum (ER), an indispensable sub-cellular component of the eukaryotic cell carries out essential functions, is critical to the survival of the organism. The chaperone proteins and the folding enzymes which are multi-domain ER effectors carry out 3-dimensional conformation of nascent polypeptides and check misfolded protein aggregation, easing the exit of functional proteins from the ER. Diverse conditions, for instance redox imbalance, alterations in ionic calcium levels, and inflammatory signaling can perturb the functioning of the ER, leading to a build-up of unfolded or misfolded proteins in the lumen. This results in ER stress, and aiming to reinstate protein homeostasis, a well conserved reaction called the unfolded protein response (UPR) is elicited. Equally, in protracted cellular stress or inadequate compensatory reaction, UPR pathway leads to cell loss. Dysfunctional ER mechanisms are responsible for neuronal degeneration in numerous human diseases, for instance Alzheimer's, Parkinson's and Huntington's diseases. In addition, mounting proof indicates that ER stress is incriminated in psychiatric diseases like major depressive disorder, bipolar disorder, and schizophrenia. Accumulating evidence suggests that pharmacological agents regulating the working of ER may have a role in diminishing advancing neuronal dysfunction in neuropsychiatric disorders. Here, new findings are examined which link the foremost mechanisms connecting ER stress and cell homeostasis. Furthermore, a supposed new pathogenic model of major neuropsychiatry disorders is provided, with ER stress proposed as the pivotal step in disease development.


Subject(s)
Humans , Apoptosis , Biological Psychiatry , Bipolar Disorder , Calcium , Depressive Disorder, Major , Endoplasmic Reticulum Stress , Endoplasmic Reticulum , Eukaryotic Cells , Homeostasis , Neurons , Neuropsychiatry , Oxidation-Reduction , Peptides , Proteostasis Deficiencies , Schizophrenia , Unfolded Protein Response
9.
The Korean Journal of Physiology and Pharmacology ; : 95-102, 2019.
Article in English | WPRIM | ID: wpr-728019

ABSTRACT

Endoplasmic reticulum (ER) stress is mediated by disturbance of Ca²⁺ homeostasis. The store-operated calcium (SOC) channel is the primary Ca²⁺ channel in non-excitable cells, but its participation in agent-induced ER stress is not clear. In this study, the effects of tunicamycin on Ca²⁺ influx in human umbilical vein endothelial cells (HUVECs) were observed with the fluorescent probe Fluo-4 AM. The effect of tunicamycin on the expression of the unfolded protein response (UPR)-related proteins BiP and CHOP was assayed by western blotting with or without inhibition of Orai1. Tunicamycin induced endothelial dysfunction by activating ER stress. Orai1 expression and the influx of extracellular Ca²⁺ in HUVECs were both upregulated during ER stress. The SOC channel inhibitor SKF96365 reversed tunicamycin-induced endothelial cell dysfunction by inhibiting ER stress. Regulation of tunicamycin-induced ER stress by Orai1 indicates that modification of Orai1 activity may have therapeutic value for conditions with ER stress-induced endothelial dysfunction.


Subject(s)
Blotting, Western , Calcium , Endoplasmic Reticulum , Endoplasmic Reticulum Stress , Endothelial Cells , Homeostasis , Human Umbilical Vein Endothelial Cells , Tunicamycin , Unfolded Protein Response
10.
Journal of Nutrition and Health ; : 176-184, 2019.
Article in English | WPRIM | ID: wpr-740562

ABSTRACT

PURPOSE: Protein overloading in the endoplasmic reticulum (ER) leads to endoplasmic reticulum stress, which exacerbates various disease conditions. Emodin, an anthraquinone compound, is known to have several health benefits. The effect of emodin against palmitic acid (PA) - induced ER stress in HepG2 cells was investigated. METHODS: HepG2 cells were treated with varying concentrations of palmitic acid to determine the working concentration that induced ER stress. ER stress associated genes such as ATF4, XBP1s, CHOP and GRP78 were checked using RT- PCR. In addition, the expression levels of unfolded protein response (UPR) associated proteins such as IRE1α, eIF2α and CHOP were checked using immunoblotting to confirm the induction of ER stress. The effect of emodin on ER stress was analyzed by treating HepG2 cells with 750 µM palmitic acid and varying concentrations of emodin, then analyzing the expression of UPR associated genes. RESULTS: It was evident from the mRNA and protein expression results that palmitic acid significantly increased the expression of UPR associated genes and thereby induced ER stress. Subsequent treatment with emodin reduced the mRNA expression of ATF4, GRP78, and XBP1s. Furthermore, the protein levels of p-IRE1α, p-elF2α and CHOP were also reduced by the treatment of emodin. Analysis of sirtuin mRNA expression showed that emodin increased the levels of SIRT4 and SIRT7, indicating a possible role in decreasing the expression of UPR-related genes. CONCLUSION: Altogether, the results suggest that emodin could exert a protective effect against fatty acid-induced ER stress and could be an agent for the management of various ER stress related diseases.


Subject(s)
Emodin , Endoplasmic Reticulum Stress , Endoplasmic Reticulum , Hep G2 Cells , Immunoblotting , Insurance Benefits , Palmitic Acid , Polymerase Chain Reaction , RNA, Messenger , Sirtuins , Unfolded Protein Response
11.
Journal of Breast Cancer ; : 354-362, 2018.
Article in English | WPRIM | ID: wpr-718898

ABSTRACT

Cellular stress severely disrupts endoplasmic reticulum (ER) function, leading to the abnormal accumulation of unfolded or misfolded proteins in the ER and subsequent development of endoplasmic reticulum stress (ERS). To accommodate the occurrence of ERS, cells have evolved a highly conserved, self-protecting signal transduction pathway called the unfolded protein response. Notably, ERS signaling is involved in the development of a variety of diseases and is closely related to tumor development, particularly in breast cancer. This review discusses recent research regarding associations between ERS and tumor metastasis. The information presented here will help researchers elucidate the precise mechanisms underlying ERS-mediated tumor metastasis and provide new directions for tumor therapies.


Subject(s)
Breast Neoplasms , Breast , Endoplasmic Reticulum Stress , Endoplasmic Reticulum , Neoplasm Metastasis , Signal Transduction , Unfolded Protein Response
12.
Protein & Cell ; (12): 14-24, 2017.
Article in English | WPRIM | ID: wpr-757386

ABSTRACT

The endoplasmic reticulum (ER) is the principal organelle responsible for several specific cellular functions including synthesis and folding of secretory or membrane proteins, lipid metabolism, and Ca storage. Different physiological as well as pathological stress conditions can, however, perturb ER homeostasis, giving rise to an accumulation of unfolded or misfolded proteins in the ER lumen, a condition termed ER stress. To deal with an increased folding demand, cells activate the unfolded protein response (UPR), which is initially protective but can become detrimental if ER stress is severe and prolonged. Accumulating evidence demonstrates a link between the UPR and ovarian development and function, including follicular growth and maturation, follicular atresia, and corpus luteum biogenesis. Additionally, ER stress and the UPR may also play an important role in the ovary under pathological conditions. Understanding the molecular mechanisms related to the dual role of unfolded protein response in the ovarian physiology and pathology may reveal the pathogenesis of some reproductive endocrine diseases and provide a new guidance to improve the assisted reproductive technology. Here we review the current literature and discuss concepts and progress in understanding the UPR, and we also analyze the role of ER stress and the UPR in the ovary.


Subject(s)
Animals , Female , Humans , Apoptosis , Calcium , Metabolism , Endoplasmic Reticulum , Metabolism , Pathology , Lipid Metabolism , Ovarian Diseases , Metabolism , Pathology , Therapeutics , Ovary , Metabolism , Pathology , Unfolded Protein Response
13.
Experimental & Molecular Medicine ; : e389-2017.
Article in English | WPRIM | ID: wpr-158421

ABSTRACT

The endoplasmic reticulum (ER) is an important subcellular organelle that is involved in numerous activities required to achieve and maintain functional proteins in addition to its role in the biosynthesis of lipids and as a repository of intracellular Ca²⁺. The inability of the ER to cope with protein folding beyond its capacity causes disturbances that evoke ER stress. Cells possess molecular mechanisms aimed at clearing unwanted cargo from the ER lumen as an adaptive response, but failing to do so navigates the system towards cell death. This systemic approach is called the unfolded protein response. Aging insults cells through various perturbations in homeostasis that involve curtailing ER function by mitigating the expression of its resident chaperones and enzymes. Here the unfolded protein response (UPR) cannot protect the cell due to the weakening of its protective arm, which exacerbates imbalanced homeostasis. Aging predisposed breast malignancy activates the UPR, but tumor cells maneuver the mechanistic details of the UPR, favoring tumorigenesis and thereby eliciting a treacherous condition. Tumor cells exploit UPR pathways via crosstalk involving various signaling cascades that usher tumor cells to immortality. This review aims to present a collection of data that can delineate the missing links of molecular signatures between aging and breast cancer.


Subject(s)
Aging , Arm , Breast Neoplasms , Breast , Carcinogenesis , Cell Death , Endoplasmic Reticulum , Homeostasis , Organelles , Protein Folding , Unfolded Protein Response
14.
Journal of Veterinary Science ; : 1-9, 2017.
Article in English | WPRIM | ID: wpr-224465

ABSTRACT

Excessive production of reactive oxygen species (ROS) and endoplasmic reticulum (ER) stress-mediated responses are critical to embryonic development in the challenging in vitro environment. ROS production increases during early embryonic development with the increase in protein requirements for cell survival and growth. The ER is a multifunctional cellular organelle responsible for protein folding, modification, and cellular homeostasis. ER stress is activated by a variety of factors including ROS. Such stress leads to activation of the adaptive unfolded protein response (UPR), which restores homeostasis. However, chronic stress can exceed the toleration level of the ER, resulting in cellular apoptosis. In this review, we briefly describe the generation and impact of ROS in preimplantation embryo development, the ROS-mediated activation mechanism of the UPR via the ER, and the subsequent activation of signaling pathways following ER stress in preimplantation embryos.


Subject(s)
Female , Pregnancy , Apoptosis , Blastocyst , Cell Survival , Embryonic Development , Endoplasmic Reticulum , Homeostasis , In Vitro Techniques , Organelles , Oxygen , Protein Folding , Reactive Oxygen Species , Unfolded Protein Response
15.
Diabetes & Metabolism Journal ; : 10-19, 2017.
Article in English | WPRIM | ID: wpr-222887

ABSTRACT

Chronic endoplasmic reticulum (ER) stress culminating in proteotoxicity contributes to the development of insulin resistance and progression to type 2 diabetes mellitus. Pharmacologic interventions targeting several different nuclear receptors have emerged as potential treatments for insulin resistance. The mechanistic basis for these antidiabetic effects has primarily been attributed to multiple metabolic and inflammatory functions. Here we review recent advances in our understanding of the association of ER stress with insulin resistance and the role of nuclear receptors in promoting ER stress resolution and improving insulin resistance in the liver.


Subject(s)
Diabetes Mellitus, Type 2 , Endoplasmic Reticulum Stress , Endoplasmic Reticulum , Insulin Resistance , Insulin , Liver , Receptors, Cytoplasmic and Nuclear , Unfolded Protein Response
16.
Acta cir. bras ; 31(3): 150-155, Mar. 2016. graf
Article in English | LILACS | ID: lil-777091

ABSTRACT

ABSTRACT PURPOSE : To investigate in the kidney the pathologic changes and expression of GRP78 and CHOP in the Kunming (KM) mice with combination of high-fat diet and streptozotocin-induced diabetes. METHODS : Sixty two male KM mice were randomly divided into a normal control (NC) group (n=20) and a high-fat diet (HFD) group (n=42). After a four-week dietary manipulation, the KM mice in the HFD group were injected intraperitoneally with streptozotocin to induce diabetes. After diabetic models were successfully established, the kidneys were excised and conserved for further test. RESULTS : No significant difference in the body weight was observed after the dietary manipulation (p=0.554). After the streptozotocin was injected, fasting blood glucose levels in the diabetes group (DM) were significantly higher than that in the NC group (p<0.0001). Glomerular atrophy observed under light microscope in the DM group was more serious compared with the NC group. The expression of GRP78 and CHOP in the kidneys of the mice in the DM group were higher compared with the NC group. CONCLUSION : Renal lesion occurs in the diabetic Kunming mice induced by combination of high-fat diet and low-dose streptozotocin, and endoplasmic reticulum stress and CHOP may contribute to the injury process.


Subject(s)
Animals , Male , Mice , Diabetes Mellitus, Experimental/metabolism , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Endoplasmic Reticulum Stress/physiology , Diet, High-Fat , Blood Glucose/analysis , Body Weight/physiology , Random Allocation , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/pathology , Disease Models, Animal , Transcription Factor CHOP/metabolism , Unfolded Protein Response/physiology , Heat-Shock Proteins/metabolism , Kidney/metabolism , Kidney/pathology
17.
Experimental & Molecular Medicine ; : e226-2016.
Article in English | WPRIM | ID: wpr-137224

ABSTRACT

Wnt10b, an endogenous inhibitor of adipogenesis, maintains preadipocytes in an undifferentiated state by suppressing adipogenic transcription factors. We have previously demonstrated that Wnt10b transcription during adipogenesis is negatively regulated by X-box-binding protein 1 (XBP1), an important transcription factor of the unfolded protein response. In this report, we demonstrate that XBP1s can directly induce the transcription of microRNA-148a, which in turn mediates the silencing of Wnt10b mRNA during adipogenic differentiation of 3T3-L1 cells. Stability of Wnt10b mRNA was found to be significantly increased by knockdown of XBP1s. Using computational algorithms, a set of microRNAs was predicted to bind Wnt10b mRNA, of which microRNA-148a was selected as a potential target for XBP1s. Our results revealed that microRNA-148a could bind to the 3′UTR of Wnt10b mRNA. Its ectopic expression significantly suppressed both Wnt10b expression and β-catenin activity. When we altered the expression of XBP1 in 3T3-L1 cells, microRNA-148a levels changed accordingly. A potential XBP1 response element was found in the promoter region of microRNA-148a, and XBP1s directly bound to this response element as shown by point mutation analysis and chromatin immunoprecipitation assay. In addition, a microRNA-148a mimic significantly restored adipogenic potential in XBP1-deficient 3T3-L1 cells. These findings provide the first evidence that XBP1s can regulate Wnt10b by a post-transcriptional mechanism through directly inducing microRNA-148a.


Subject(s)
3T3-L1 Cells , Adipogenesis , Chromatin Immunoprecipitation , Ectopic Gene Expression , MicroRNAs , Point Mutation , Promoter Regions, Genetic , Response Elements , RNA, Messenger , Transcription Factors , Unfolded Protein Response
18.
Experimental & Molecular Medicine ; : e226-2016.
Article in English | WPRIM | ID: wpr-137221

ABSTRACT

Wnt10b, an endogenous inhibitor of adipogenesis, maintains preadipocytes in an undifferentiated state by suppressing adipogenic transcription factors. We have previously demonstrated that Wnt10b transcription during adipogenesis is negatively regulated by X-box-binding protein 1 (XBP1), an important transcription factor of the unfolded protein response. In this report, we demonstrate that XBP1s can directly induce the transcription of microRNA-148a, which in turn mediates the silencing of Wnt10b mRNA during adipogenic differentiation of 3T3-L1 cells. Stability of Wnt10b mRNA was found to be significantly increased by knockdown of XBP1s. Using computational algorithms, a set of microRNAs was predicted to bind Wnt10b mRNA, of which microRNA-148a was selected as a potential target for XBP1s. Our results revealed that microRNA-148a could bind to the 3′UTR of Wnt10b mRNA. Its ectopic expression significantly suppressed both Wnt10b expression and β-catenin activity. When we altered the expression of XBP1 in 3T3-L1 cells, microRNA-148a levels changed accordingly. A potential XBP1 response element was found in the promoter region of microRNA-148a, and XBP1s directly bound to this response element as shown by point mutation analysis and chromatin immunoprecipitation assay. In addition, a microRNA-148a mimic significantly restored adipogenic potential in XBP1-deficient 3T3-L1 cells. These findings provide the first evidence that XBP1s can regulate Wnt10b by a post-transcriptional mechanism through directly inducing microRNA-148a.


Subject(s)
3T3-L1 Cells , Adipogenesis , Chromatin Immunoprecipitation , Ectopic Gene Expression , MicroRNAs , Point Mutation , Promoter Regions, Genetic , Response Elements , RNA, Messenger , Transcription Factors , Unfolded Protein Response
19.
Chinese Medical Journal ; (24): 2845-2852, 2016.
Article in English | WPRIM | ID: wpr-230869

ABSTRACT

<p><b>BACKGROUND</b>Amyloid β (Aβ) deposits and the endoplasmic reticulum stress (ERS) are both well established in the development and progression of Alzheimer's disease (AD). However, the mechanism and role of Aβ-induced ERS in AD-associated pathological progression remain to be elucidated.</p><p><b>METHODS</b>The five familial AD (5×FAD) mice and wild-type (WT) mice aged 2, 7, and 12 months were used in the present study. Morris water maze test was used to evaluate their cognitive performance. Immunofluorescence and Western blot analyses were used to examine the dynamic changes of pro-apoptotic (CCAAT/enhancer-binding protein homologous protein [CHOP] and cleaved caspase-12) and anti-apoptotic factors (chaperone glucose-regulated protein [GRP] 78 and endoplasmic reticulum-associated protein degradation-associated ubiquitin ligase synovial apoptosis inhibitor 1 [SYVN1]) in the ERS-associated unfolded protein response (UPR) pathway.</p><p><b>RESULTS</b>Compared with age-matched WT mice, 5×FAD mice showed higher cleaved caspase-3, lower neuron-positive staining at the age of 12 months, but earlier cognitive deficit at the age of 7 months (all P < 0.05). Interestingly, for 2-month-old 5×FAD mice, the related proteins involved in the ERS-associated UPR pathway, including CHOP, cleaved caspase-12, GRP 78, and SYVN1, were significantly increased when compared with those in age-matched WT mice (all P < 0.05). Moreover, ERS occurred mainly in neurons, not in astrocytes.</p><p><b>CONCLUSIONS</b>These findings suggest that compared with those of age-matched WT mice, ERS-associated pro-apoptotic and anti-apoptotic proteins are upregulated in 2-month-old 5×FAD mice, consistent with intracellular Aβ aggregation in neurons.</p>


Subject(s)
Animals , Mice , Alzheimer Disease , Metabolism , Amyloid beta-Peptides , Metabolism , Apoptosis , Physiology , Blotting, Western , Caspase 12 , Metabolism , Endoplasmic Reticulum Stress , Physiology , Frontal Lobe , Metabolism , Heat-Shock Proteins , Metabolism , Immunohistochemistry , Mice, Transgenic , Neurons , Metabolism , Transcription Factor CHOP , Metabolism , Ubiquitin-Protein Ligases , Metabolism , Unfolded Protein Response , Physiology
20.
Clinics ; 70(5): 373-379, 05/2015. tab, graf
Article in English | LILACS | ID: lil-748273

ABSTRACT

OBJECTIVE: Intestinal ischemia-reperfusion injury occurs in several clinical conditions and after intestinal transplantation. The aim of the present study was to investigate the phenomena of apoptosis and cell proliferation in a previously described intestinal ischemia-reperfusion injury autograft model using immunohistochemical markers. The molecular mechanisms involved in ischemia-reperfusion injury repair were also investigated by measuring the expression of the early activation genes c-fos and c-jun, which induce apoptosis and cell proliferation. MATERIALS AND METHODS: Thirty adult male Wistar rats were subjected to surgery for a previously described ischemia-reperfusion model that preserved the small intestine, the cecum and the ascending colon. Following reperfusion, the cecum was harvested at different time points as a representative segment of the intestine. The rats were allocated to the following four subgroups according to the reperfusion time: subgroup 1: 5 min; subgroup 2: 15 min; subgroup 3: 30 min; and subgroup 4: 60 min. A control group of cecum samples was also collected. The expression of c-fos, c-jun and immunohistochemical markers of cell proliferation and apoptosis (Ki67 and TUNEL, respectively) was studied. RESULTS: The expression of both c-fos and c-jun in the cecum was increased beginning at 5 min after ischemia-reperfusion compared with the control. The expression of c-fos began to increase at 5 min, peaked at 30 min, and exhibited a declining tendency at 60 min after reperfusion. A progressive increase in c-jun expression was observed. Immunohistochemical analyses confirmed these observations. CONCLUSION: The early activation of the c-fos and c-jun genes occurred after intestinal ischemia-reperfusion injury, and these genes can act together to trigger cell proliferation and apoptosis. .


Subject(s)
Animals , Mice , Rats , Endoplasmic Reticulum Stress , Fatty Acids/metabolism , Hepatocytes/physiology , Unfolded Protein Response , Acetylcysteine/metabolism , Cell Line, Tumor , Cells, Cultured , Glutathione/metabolism , Hepatocytes/metabolism , Oxidation-Reduction , Protein Folding
SELECTION OF CITATIONS
SEARCH DETAIL